Structure of 2-Amino-1,3-diazaazulene Hydrobromide Monohydrate

By Hirotaka Shimanouchi, Yoshio Sasada and Bhajan Singh*
Laboratory of Chemistry for Natural Products, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 227, Japan

(Received 30 May 1979; accepted 10 July 1979)

Abstract

C}_{8} \mathrm{H}_{8} \mathrm{~N}_{3}^{+} . \mathrm{Br}^{-} . \mathrm{H}_{2} \mathrm{O}, M_{r}=244 \cdot 09\), monoclinic, orange prisms, $P 2_{1} / a, a=25.436$ (6), $b=$ 7.484 (2), $c=10.798$ (2) $\AA, \beta=101.61$ (2) ${ }^{\circ} ; D_{x}=$ $1.610 \mathrm{Mg} \mathrm{m}^{-3}$ for $Z=8$. The crystal contains two crystallographically independent molecules protonated at a ring N atom. They form a pseudocentrosymmetric dimer with two $\mathrm{NH} \cdots \mathrm{N}$ hydrogen bonds. A significant difference between the two independent molecules concerns the second hydrogen-bonding scheme; one links to a bromide anion and the other to water.

Introduction. The present work was undertaken to reveal the site of protonation in 2 -amino-1,3-diaza-

[^0]azulene (Nozoe, Mukai, Takase, Murata \& Matsumoto, 1953) and the effect of protonation on the molecular geometry.
Intensity data were collected with graphite-monochromated Mo K rr radiation on a Rigaku four-circle automatic diffractometer using a crystal $0.6 \times 0.6 \times$ 0.4 mm . The $\theta-2 \theta$ scan was used for a range of $(1.5+$ $0.35 \tan \theta)^{\circ}$, the scan speed being $4^{\circ} \mathrm{min}^{-1}$ in 2θ. Four standard reflexions showed only statistical fluctuations throughout data collection. The intensities were corrected for Lorentz-polarization effects, but not for absorption, $\mu\left(\mathrm{Mo} K(\mathrm{c})=4.29 \mathrm{~mm}^{-1} .4389\right.$ independent reflexions with $2 \theta<54.0^{\circ}$ were measured; 2627 with $\left|F_{o}\right| \geq 3 \sigma\left(F_{o}\right)$ were used as observed.

The structure was determined by the heavy-atom method and refined by a block-diagonal-matrix least-

Table 1. Final atomic coordinates ($\times 10^{4}$, for $\mathrm{H} \times 10^{3}$)

squares method. The positions of the H atoms were first estimated from geometrical considerations involving the possible hydrogen-bonding scheme, and then confirmed in the final difference Fourier map; their positional parameters were refined with the temperature factors kept constant at $4 \AA^{2}$. The final R was 0.105 for the observed reflexions and 0.225 for all reflexions. The weighting scheme used for minimizing $\sum w\left(\left|F_{o}\right|-\right.$ $\left.\left|F_{c}\right|\right)^{2}$ was $w=1 /\left[\sigma^{2}\left(F_{o}\right)+0 \cdot 04217\left|F_{o}\right|-\right.$ $\left.0.00132\left|F_{o}\right|^{2}\right]$. The atomic scattering factors were taken from International Tables for X-ray Crystallography (1974). The atomic parameters obtained are given in Table 1.*

Discussion. The asymmetric unit consists of two formula units. Molecules 1 and 2 are connected by two $\mathrm{NH} \cdots \mathrm{N}$ hydrogen bonds, forming a pseudocentrosymmetric dimer (Fig. 1). A significant difference between the two independent moleculcs concerns the second hydrogen-bonding scheme. While molecule 1 is directly hydrogen-bonded to $\operatorname{Br}(1)$ and $\operatorname{Br}(2)$ anions,

[^1]

Fig. 1. Bond lengths (\AA) with their e.s.d.'s in parentheses, and thermal ellipsoids at the 30% probability level.
molecule 2 is indirectly linked to anions through $\mathrm{O}(W 1)$ and $\mathrm{O}(W 2)$. As shown in Fig. 2, in the crystal structure all H atoms attached to O or N participate in hydrogen bonding (Table 2).

Although the estimated standard deviations are rather large and a detailed discussion of bond lengths and angles is questionable, it should be noted that corresponding bond lengths and angles in molecules 1 and 2 appear to agree fairly well, especially in the seven-membered ring (Fig. 1 and Table 3).

Inspection of the bond lengths and angles suggests that the π electrons are delocalized over the whole molecule; in particular, the rather short $\mathrm{C}(2)-\mathrm{N}(2)$ bond indicates conjugation of the amino group with the ring system.
$\mathrm{C}(9)-\mathrm{C}(10)$ is longer than the other $\mathrm{C}-\mathrm{C}$ bonds, but is somewhat shorter than the corresponding bonds in azulene-1,3-dipropionic acid (Ammon \& Sundaralingam, 1966), cis,cis-1,3-bis(styryl)azulene (Fallon, Ammon, Anderson, Currie \& LaBar, 1974), and 1-methylamino-7-methylimino-1,3,5-cycloheptatriene (Goldstein \& Trueblood, 1967). This feature suggests some contribution from the canonical formulae where positive charge is on the seven-membered ring.

Fig. 2. Stereoscopic view of the crystal structure.

Table 2. Geometry of the hydrogen bonds
The numbers 1 and 2 following the atomic number designate molecules 1 and 2 respectively.
Donor Acceptor

$\mathrm{N}(3) 1$	$\mathrm{Br}(1)$	$3 \cdot 21(1) \AA$	$\mathrm{C}(10) 1$	$\mathrm{~N}(3) 1$	$\mathrm{Br}(1)$	$130(1)^{\circ}$
$\mathrm{N}(2) 1$	$\mathrm{Br}(2)$	$3 \cdot 38(1)$	$\mathrm{C}(2) 1$	$\mathrm{~N}(2) 1$	$\operatorname{Br}(2)$	$155(1)$
$\mathrm{O}(W 1)$	$\mathrm{Br}(1)^{\mathrm{i}}$	$3 \cdot 30(1)$	$\mathrm{Br}(1)^{\mathrm{i}}$	$\mathrm{O}(W 1)$	$\mathrm{Br}(2)^{\mathrm{ij}}$	$129.2(4)$
$\mathrm{O}(W 1)$	$\mathrm{Br}(2)^{\mathrm{ii}}$	$3 \cdot 41(1)$				
$\mathrm{O}(W 2)$	$\mathrm{Br}(2)^{\mathrm{i}}$	$3 \cdot 37(1)$	$\mathrm{Br}(2)^{\mathrm{i}}$	$\mathrm{O}(W 2)$	$\mathrm{Br}(2)^{\mathrm{ili}}$	$108 \cdot 6(4)$
$\mathrm{O}(W 2)$	$\mathrm{Br}(2)^{\mathrm{ili}}$	$3 \cdot 39(1)$				
$\mathrm{N}(3) 2$	$\mathrm{O}(W 1)$	$2 \cdot 69(2)$	$\mathrm{C}(10) 2$	$\mathrm{~N}(3) 2$	$\mathrm{O}(W 1)$	$118(1)$
$\mathrm{N}(2) 2$	$\mathrm{O}(W 2)$	$2 \cdot 80(2)$	$\mathrm{C}(2) 2$	$\mathrm{~N}(2) 2$	$\mathrm{O}(W 2)$	$127(1)$
$\mathrm{N}(2) 1$	$\mathrm{~N}(1) 2$	$3 \cdot 02(2)$	$\mathrm{C}(2) 1$	$\mathrm{~N}(2) 1$	$\mathrm{~N}(1) 2$	$112(1)$
$\mathrm{N}(2) 2$	$\mathrm{~N}(1) 1$	$2 \cdot 98(2)$	$\mathrm{C}(2) 2$	$\mathrm{~N}(2) 2$	$\mathrm{~N}(1) 1$	$113(1)$

Symmetry code
$\begin{array}{ll}\text { (i) } 1-x, 1-y, 1-z & \text { (iii) } x, y,-1+z\end{array}$
(ii) $1-x, 2-1,1-z$

Table 3. Bond angles $\left({ }^{\circ}\right)$ and their e.s.d.'s in parentheses

	Molecule 1	Molecule 2
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(9)$	106.2 (1.1)	106.5 (1.1)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{N}(2)$	123.4 (1.3)	125.2 (1.2)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{N}(3)$	$111.2(1.1)$	$110 \cdot 6$ (1-1)
$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{N}(3)$	125.4 (1.3)	124.1 (1-2)
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(10)$	109.2 (1-1)	108.1 (1-1)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(10)$	126.0 (1.5)	125.6 (1.3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	130.8 (1.6)	$130 \cdot 6$ (1.4)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	129.7 (1.5)	128.3 (1.5)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	129.3 (1.4)	129.5 (1.5)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	127.6 (1.3)	127.5 (1.3)
$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	124.4 (1.2)	123.6 (1.2)
$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	108.6 (1.1)	109.4 (1-1)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	127.0 (1.2)	127.1 (1-2)
$\mathrm{N}(3)-\mathrm{C}(10)-\mathrm{C}(4)$	125.5 (1.3)	123.2 (1.2)
$\mathrm{N}(3)-\mathrm{C}(10)-\mathrm{C}(9)$	104.8 (1-1)	105.4 (1-1)
$\mathrm{C}(4)-\mathrm{C}(10)-\mathrm{C}(9)$	129.6 (1.3)	131.4 (1-3)

The $\mathrm{C}(10)-\mathrm{N}(3)-\mathrm{C}(2)$ angle is larger than $\mathrm{C}(2)-$ $\mathrm{N}(1)-\mathrm{C}(9)$. This difference may be mainly attributable to the protonation on $N(3)$, as noticed by Singh (1965).

It has been established that in the present crystals protonation occurs at one ring N atom as formulated in (I) and therefore formula (II) proposed by Nozoe et al. (1953) is rejected.

(I)

(II)

Fig. 3. Stacking of the molecular planes and interatomic contact distances (A).

Table 4. Deviations (\AA) of atoms from the least. squares planes

Asterisks denote atoms used to calculate the planes.

	Plane (I)		Plane (II)	
	Molecule	Molecule	Molecule Molecule	
	1	2	2	1
$\mathrm{~N}(1)$	0.008^{*}	0.122	0.014^{*}	-0.205
$\mathrm{C}(2)$	0.007^{*}	0.151	-0.001^{*}	-0.163
$\mathrm{~N}(3)$	0.014^{*}	0.125	-0.010^{*}	-0.174
$\mathrm{C}(4)$	-0.004^{*}	0.057	0.006^{*}	-0.279
$\mathrm{C}(5)$	-0.006^{*}	-0.009	-0.003^{*}	-0.336
$\mathrm{C}(6)$	0.018^{*}	-0.035	0.010^{*}	-0.350
$\mathrm{C}(7)$	0.009^{*}	-0.046	-0.008^{*}	-0.350
$\mathrm{C}(8)$	-0.014^{*}	0.004	-0.006^{*}	-0.326
$\mathrm{C}(9)$	-0.015^{*}	0.060	-0.003^{*}	-0.273
$\mathrm{C}(10)$	-0.019^{*}	0.081	0.001^{*}	-0.261
$\mathrm{~N}(2)$	0.009	0.162	-0.040	-0.110
$\mathrm{Br}(1)$	0.435		0.333	
$\operatorname{Br}(2)$	-0.173		-0.155	
$\mathrm{O}(W 1)$	0.021		-0.167	
$\mathrm{O}(W 2)$	0.271		-0.024	

Equations of the planes are of the form $A X+B Y+C Z+D=0$, in which X, Y and Z are Cartesian coordinates in \AA referred to the a, b and c^{*} axes respectively.

Plane	A	B	C	D
(I)	$0.4572(36)$	$-0.8727(17)$	$0.1715(29)$	$-1.245(30)$
(II)	$0.4595(33)$	$-0.8627(16)$	$0.2110(30)$	$-1.666(50)$

Each azulene ring is planar (Table 4), and the interplanar angle between molecules 1 and 2 is $2 \cdot 3(2)^{\circ}$. As shown in Fig. 3, considerable overlapping of atoms is observed between the molecules at x, y, z and those at $1-x, 1-y, 1-z$. Contact distances between atoms are equal to or slightly longer than the sum of their van der Waals radii.

The authors are grateful to Professor Tetsuo Nozoe for a gift of the specimen, and to Mr Hiroshi Okuto for a preliminary experiment.

References

Ammon, H. L. \& Sundaralingam, M. (1966). J. Am. Chem. Soc. 88, 4794-4799.
Fallon, L. iII, Ammon, H. L., Anderson, A. G. Jr, Currie, J. O. Jr \& Labar, R. A. (1974). Acta Cryst. B30, 53I-533.
Goldstein, P. \& Trueblood, K. N. (1967). Acta Cryst. 23, 148-156.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 72-98. Birmingham: Kynoch Press.
Nozoe, T., Mukai, T., Takase, K., Murata, I. \& Matsumoto, K. (1953). Proc. Jpn Acad. 29, 452-456.
Singh, C. (1965). Acta Cryst. 19, 861-864.

[^0]: * Present address: Department of Chemistry, Guru Nakak Dev University, Amritsar, India.

[^1]: * Lists of structure factors, thermal parameters and bond angles involving H atoms have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34609 (18 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

